Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Metab Pharmacokinet ; 46: 100465, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35853340

RESUMO

The number of single-nucleotide substitutions of human flavin-containing monooxygenase 3 (FMO3) recorded in mega-databases is increasing. Moreover, phenotype-gene analyses have revealed impaired FMO3 variants associated with the metabolic disorder trimethylaminuria. In this study, four novel amino-acid substituted FMO3 variants, namely p.(Gly191Asp), p.(Glu414Gln), p.(Phe510Ser), and p.(Val530CysfsTer1), were identified in the whole-genome sequences in the Japanese population reference panel (8.3K JPN) of the Tohoku Medical Megabank Organization. Additionally, four variants, namely p.(Ile369Thr), p.(Phe463Val), p.(Arg500Gln), and p.(Ala526Thr) FMO3, were found in the 8.3K JPN database but were already recorded in the National Center for Biotechnology Information database. Novel FMO3 variants p.[(Met1Leu)] and p.[(Trp231Ter)] were also identified in phenotype-gene analyses of 290 unrelated subjects with self-reported malodor. Among the eight recombinant FMO3 variants tested (except for p.[(Met1Leu)] and p.[(Trp231Ter)]), Arg500Gln and Gly191Asp FMO3, respectively, had lower and much lower capacities for trimethylamine and/or benzydamine N-oxygenation activities than wild-type FMO3. Because another FMO3 mutation p.[(Gly191Cys)] with diminished recombinant protein activity was previously detected in two independent probands, Gly191 would appear to be important for FMO3 catalytic function. Analysis of whole-genome sequence data and trimethylaminuria phenotypes revealed missense FMO3 variants that severely impaired FMO3-mediated N-oxygenations in Japanese subjects that could be susceptible to low drug clearances.


Assuntos
Benzidamina , Humanos , Japão , Proteínas Recombinantes , Nucleotídeos
2.
Drug Metab Pharmacokinet ; 41: 100420, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34634752

RESUMO

Increasing numbers of single-nucleotide substitutions of the human flavin-containing monooxygenase 3 (FMO3) gene are being recorded in mega-databases. Phenotype-gene analyses revealed impaired FMO3 variants associated with the metabolic disorder trimethylaminuria. Here, a series of reliable FMO3 genotyping confirmation methods was assembled and developed for 45 impaired FMO3 variants, mainly found in Japanese populations, using singleplex or duplex polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) methods and singleplex, duplex, or tetraplex allele-specific PCR methods. Nine PCR-RFLP procedures with single restriction enzymes and fourteen duplex PCR-RFLP procedures (for p.Trp41Ter and p.Thr329Ala, p.Met66Val and p.Leu163Pro, p.Pro70Leu and p.Glu308Gly, p.Asn114Ser and p.Ser195Leu, p.Glu158Lys and p.Ile441Thr, p.Cys197Ter and p.Trp388Ter, p.Arg205Cys and p.Val257Met, p.Arg205His and p.Cys397Ser, p.Met211ArgfsTer10 and p.Arg492Trp, p.Arg223Gln and p.Leu473Pro, p.Met260Val and p.Thr488Ala, p.Tyr269His and p.Ala311Pro, p.Ser310Leu and p.Gly376Glu, and p.Gln470Ter and p.Arg500Ter) were newly established along with eight singleplex (for p.Pro153GlnfsTer14, p.Gly191Cys, p.Pro248Thr, p.Ile486Met, and p.Pro496Ser, among others), one duplex (p.Ile199Ser and p.Asp286Tyr), and one tetraplex (p.Ile7Thr, p.Val58Ile, p.Thr201Lys, and p.Gly421Val) allele-specific PCR systems. This series of systems should facilitate the easy detection in a clinical setting of FMO3 variants in Japanese subjects susceptible to low drug clearances or drug reactions possibly caused by impaired FMO3 function.


Assuntos
Erros Inatos do Metabolismo , Oxigenases , Alelos , Humanos , Japão , Erros Inatos do Metabolismo/genética , Oxigenases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...